Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Microb Cell Fact ; 23(1): 86, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509572

RESUMO

BACKGROUND: Escherichia coli is one of the most commonly used host organisms for the production of biopharmaceuticals, as it allows for cost-efficient and fast recombinant protein expression. However, challenging proteins are often produced with low titres or as inclusion bodies, and the manufacturing process needs to be developed individually for each protein. Recently, we developed the CASPONTM technology, a generic fusion tag-based platform process for high-titer soluble expression including a standardized downstream processing and highly specific enzymatic cleavage of the fusion tag. To assess potential strategies for further improvement of the N-terminally fused CASPONTM tag, we modified the 5'UTR and 5' region of the tag-coding mRNA to optimize the ribosome-mRNA interactions. RESULTS: In the present work, we found that by modifying the 5'UTR sequence of a pET30acer plasmid-based system, expression of the fusion protein CASPONTM-tumour necrosis factor α was altered in laboratory-scale carbon-limited fed-batch cultivations, but no significant increase in expression titre was achieved. Translation efficiency was highest for a construct carrying an expression enhancer element and additionally possessing a very favourable interaction energy between ribosome and mRNA (∆Gtotal). However, a construct with comparatively low transcriptional efficiency, which lacked the expression enhancer sequence and carried the most favourable ∆Gtotal tested, led to the highest recombinant protein formation alongside the reference pET30a construct. Furthermore, we found, that by introducing synonymous mutations within the nucleotide sequence of the T7AC element of the CASPONTM tag, utilizing a combination of rare and non-rare codons, the free folding energy of the nucleotides at the 5' end (-4 to + 37) of the transcript encoding the CASPONTM tag increased by 6 kcal/mol. Surprisingly, this new T7ACrare variant led to improved recombinant protein titres by 1.3-fold up to 5.3-fold, shown with three industry-relevant proteins in lab-scale carbon limited fed-batch fermentations under industrially relevant conditions. CONCLUSIONS: This study reveals some of the complex interdependencies between the ribosome and mRNA that govern recombinant protein expression. By modifying the 5'UTR to obtain an optimized interaction energy between the mRNA and the ribosome (ΔGtotal), transcript levels were changed, highlighting the different translation efficiencies of individual transcripts. It was shown that the highest recombinant titre was not obtained by the construct with the most efficient translation but by a construct with a generally high transcript amount coupled with a favourable ΔGtotal. Furthermore, an unexpectedly high potential to enhance expression by introducing silent mutations including multiple rare codons into the 5'end of the CAPONTM tag's mRNA was identified. Although the titres of the fusion proteins were dramatically increased, no formation of inclusion bodies or negative impact on cell growth was observed. We hypothesize that the drastic increase in titre is most likely caused by better ribosomal binding site accessibility. Our study, which demonstrates the influence of changes in ribosome-mRNA interactions on protein expression under industrially relevant production conditions, opens the door to the applicability of the new T7ACrare tag in biopharmaceutical industry using the CASPONTM platform process.


Assuntos
Carbono , Escherichia coli , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Escherichia coli/genética , Escherichia coli/metabolismo , Códon , Proteínas Recombinantes/genética , Proteínas Recombinantes de Fusão/genética
2.
J Biotechnol ; 384: 29-37, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423471

RESUMO

Cell disintegration and protein extraction are crucial steps in downstream process development for biopharmaceuticals produced in E. coli. In this study, we explored the extraction mechanism of polyethyleneimine (PEI) at the cellular level and characterized the floc network that is formed upon PEI addition by Focused Beam Reflectance Measurement and Dispersion Analyzer. PEI disintegrates the cells by detachment of the outer membrane allowing protein to diffuse into the interspace of the flocs. Protein release into the supernatant occurs by diffusion out of the floc network. We could show that the type and concentrations of PEIs with varying molecular weight determines the floc properties and thus the extraction efficiency. We could demonstrate why optimal conditions, using 70 kDa PEI at 0.25 g/g cell dry mass, lead to efficient extraction while at suboptimal conditions extraction is almost negligible. Our findings provide valuable insights into the relationship between floc properties and PEI-driven protein extraction, with potential applications in bioprocessing and biotechnology.


Assuntos
Escherichia coli , Polietilenoimina , Escherichia coli/genética , Peso Molecular , Proteínas de Membrana
3.
Microb Cell Fact ; 23(1): 14, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183013

RESUMO

BACKGROUND: Escherichia coli is a cost-effective expression system for production of antibody fragments like Fabs. Various yield improvement strategies have been applied, however, Fabs remain challenging to produce. This study aimed to characterize the gene expression response of commonly used E. coli strains BL21(DE3) and HMS174(DE3) to periplasmic Fab expression using RNA sequencing (RNA-seq). Two Fabs, Fabx and FTN2, fused to a post-translational translocation signal sequence, were produced in carbon-limited fed-batch cultivations. RESULTS: Production of Fabx impeded cell growth substantially stronger than FTN2 and yields of both Fabs differed considerably. The most noticeable, common changes in Fab-producing cells suggested by our RNA-seq data concern the cell envelope. The Cpx and Psp stress responses, both connected to inner membrane integrity, were activated, presumably by recombinant protein aggregation and impairment of the Sec translocon. The data additionally suggest changes in lipopolysaccharide synthesis, adjustment of membrane permeability, and peptidoglycan maturation and remodeling. Moreover, all Fab-producing strains showed depletion of Mg2+, indicated by activation of the PhoQP two-component signal transduction system during the early stage and sulfur and phosphate starvation during the later stage of the process. Furthermore, our data revealed ribosome stalling, caused by the Fabx amino acid sequence, as a contributor to low Fabx yields. Increased Fabx yields were obtained by a site-specific amino acid exchange replacing the stalling sequence. Contrary to expectations, cell growth was not impacted by presence or removal of the stalling sequence. Considering ribosome rescue is a conserved mechanism, the substantial differences observed in gene expression between BL21(DE3) and HMS174(DE3) in response to ribosome stalling on the recombinant mRNA were surprising. CONCLUSIONS: Through characterization of the gene expression response to Fab production under industrially relevant cultivation conditions, we identified potential cell engineering targets. Thereby, we hope to enable rational approaches to improve cell fitness and Fab yields. Furthermore, we highlight ribosome stalling caused by the amino acid sequence of the recombinant protein as a possible challenge during recombinant protein production.


Assuntos
Escherichia coli , Escherichia coli/genética , RNA-Seq , Análise de Sequência de RNA , Proteínas Recombinantes , Expressão Gênica
4.
Heliyon ; 9(12): e22463, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046162

RESUMO

Functionalization of proteins by incorporating reactive non-canonical amino acids (ncAAs) has been widely applied for numerous biological and therapeutic applications. The requirement not to lose the intrinsic properties of these proteins is often underestimated and not considered. Main purpose of this study was to answer the question whether functionalization via residue-specific incorporation of the ncAA N6-[(2-Azidoethoxy) carbonyl]-l-lysine (Azk) influences the properties of the anti-tumor-necrosis-factor-α-Fab (FTN2). Therefore, FTN2Azk variants with different Azk incorporation sites were designed and amber codon suppression was used for production. The functionalized FTN2Azk variants were efficiently produced in fed-batch like µ-bioreactor cultivations in the periplasm of E. coli displaying correct structure and antigen binding affinities comparable to those of wild-type FTN2. Our FTN2Azk variants with reactive handles for diverse conjugates enable tracking of recombinant protein in the production cell, pharmacological studies and translation into new pharmaceutical applications.

5.
J Biotechnol ; 371-372: 41-49, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37285941

RESUMO

We used a polycationic polymer polyethyleneimine (PEI) to develop a method to extract recombinant proteins produced in the Escherichia coli (E. coli) cytosol. Compared to high pressure homogenization, commonly used to disrupt E. coli cells, our extraction method leads to higher purity of extracts. Upon addition of PEI to the cells, flocculation occurs and the recombinant protein gradually diffuses out of the PEI/cell network. While several aspects such as the E. coli strain, the cell or PEI concentration as well as the protein titer and the pH of the buffer seem to influence the extraction rate, our results show that the PEI molecule (molecular weight and structure) must be chosen appropriately for protein extraction. The method works well with resuspended cells but can also be applied directly to fermentation broths at higher PEI concentration. This extraction approach allows for effective reduction of DNA, endotoxins, and host cell proteins levels by 2-4 orders of magnitude, and drastically facilitate the subsequent downstream processing steps such as centrifugation and filtration.


Assuntos
Escherichia coli , Polietilenoimina , Escherichia coli/metabolismo , Polietilenoimina/química , Proteínas de Fluorescência Verde/metabolismo , DNA , Floculação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
ACS Omega ; 8(17): 15406-15421, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151527

RESUMO

In recent years, receptor-mediated drug delivery has gained major attention in the treatment of cancer. The pathogen-derived Shiga Toxin B subunit (STxB) can be used as a carrier that detects the tumor-associated glycosphingolipid globotriaosylceramide (Gb3) receptors. While drug conjugation via lysine or cysteine offers random drug attachment to carriers, click chemistry has the potential to improve the engineering of delivery systems as the site specificity can eliminate interference with the active binding site of tumor ligands. We present the production of recombinant STxB in its wild-type (STxBwt) version or incorporating the noncanonical amino acid azido lysine (STxBAzK). The STxBwt and STxBAzK were manufactured using a growth-decoupled Escherichia coli (E. coli)-based expression strain and analyzed via flow cytometry for Gb3 receptor recognition and specificity on two human colorectal adenocarcinoma cell lines-HT-29 and LS-174-characterized by high and low Gb3 abundance, respectively. Furthermore, STxBAzK was clicked to the antineoplastic agent monomethyl auristatin E (MMAE) and evaluated in cell-killing assays for its ability to deliver the drug to Gb3-expressing tumor cells. The STxBAzK-MMAE conjugate induced uptake and release of the MMAE drug in Gb3-positive tumor cells, reaching 94% of HT-29 cell elimination at 72 h post-treatment and low nanomolar doses while sparing LS-174 cells. STxBAzK is therefore presented as a well-functioning drug carrier, with a possible application in cancer therapy. This research demonstrates the feasibility of lectin carriers used in delivering drugs to tumor cells, with prospects for improved cancer therapy in terms of straightforward drug attachment and effective cancer cell elimination.

7.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768962

RESUMO

Stress-associated changes in the mechanical properties at the single-cell level of Escherichia coli (E. coli) cultures in bioreactors are still poorly investigated. In our study, we compared peptide-producing and non-producing BL21(DE3) cells in a fed-batch cultivation with tightly controlled process parameters. The cell growth, peptide content, and cell lysis were analysed, and changes in the mechanical properties were investigated using atomic force microscopy. Recombinant-tagged somatostatin-28 was expressed as soluble up to 197 ± 11 mg g-1. The length of both cultivated strains increased throughout the cultivation by up to 17.6%, with nearly constant diameters. The peptide-producing cells were significantly softer than the non-producers throughout the cultivation, and respective Young's moduli decreased by up to 57% over time. A minimum Young's modulus of 1.6 MPa was observed after 23 h of the fed-batch. Furthermore, an analysis of the viscoelastic properties revealed that peptide-producing BL21(DE3) appeared more fluid-like and softer than the non-producing reference. For the first time, we provide evidence that the physical properties (i.e., the mechanical properties) on the single-cell level are significantly influenced by the metabolic burden imposed by the recombinant peptide expression and C-limitation in bioreactors.


Assuntos
Reatores Biológicos , Escherichia coli , Proteínas Recombinantes/metabolismo , Ciclo Celular
8.
Biotechnol J ; 18(1): e2200152, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442862

RESUMO

The scale-up of bioprocesses remains one of the major obstacles in the biotechnology industry. Scale-down bioreactors have been identified as valuable tools to investigate the heterogeneities observed in large-scale tanks at the laboratory scale. Additionally, computational fluid dynamics (CFD) simulations can be used to gain information about fluid flow in tanks used for production. Here, we present the rational design and comprehensive characterization of a scale-down setup, in which a flexible and modular plug-flow reactor was connected to a stirred-tank bioreactor. With the help of CFD using the realizable k-ε model, the mixing time difference between a 20 and 4000 L bioreactor was evaluated and used as scale-down criterion. CFD simulations using a shear stress transport (SST) k-ω turbulence model were used to characterize the plug-flow reactor in more detail, and the model was verified using experiments. Additionally, the model was used to simulate conditions where experiments technically could not be performed due to sensor limitations. Nevertheless, verification is difficult in this case as well. This was the first time a scale-down setup was tested on high-cell-density Escherichia coli cultivations to produce industrially relevant antigen-binding fragments (Fab). Biomass yield was reduced by 11% and specific product yield was reduced by 20% during the scale-down cultivations. Additionally, the intracellular Fab fraction was increased by using the setup. The flexibility of the introduced scale-down setup in combination with CFD simulations makes it a valuable tool for investigating scale effects at the laboratory scale. More information about the large scale is still necessary to further refine the setup and to speed up bioprocess scale-up in the future.


Assuntos
Reatores Biológicos , Hidrodinâmica , Simulação por Computador , Biotecnologia , Biomassa , Escherichia coli/genética
9.
Microb Biotechnol ; 16(5): 893-900, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35830603

RESUMO

Early-stage inclusion body formation is still mysterious. Literature is ambiguous about the existence of rod-shaped protein aggregates, a potential sponge-like inclusion body scaffold as well as the number of inclusion bodies per Escherichia coli cell. In this study, we verified the existence of rod-shaped inclusion bodies, confirmed their porous morphology, the presence of multiple protein aggregates per cell and modelled inclusion body formation as function of the number of generations.


Assuntos
Escherichia coli , Agregados Proteicos , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/metabolismo
10.
Nucleic Acids Res ; 50(18): 10772-10784, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36134715

RESUMO

Governance of the endogenous gene regulatory network enables the navigation of cells towards beneficial traits for recombinant protein production. CRISPRactivation and interference provides the basis for gene expression modulation but is primarily applied in eukaryotes. Particularly the lack of wide-ranging prokaryotic CRISPRa studies might be attributed to intrinsic limitations of bacterial activators and Cas9 proteins. While bacterial activators need accurate spatial orientation and distancing towards the target promoter to be functional, Cas9-based CRISPR tools only bind sites adjacent to NGG PAM sequences. These circumstances hampered Cas9-guided activators from mediating the up-regulation of endogenous genes at precise positions in bacteria. We could overcome this limitation by combining the PAM independent Cas9 variant SpRY and a CRISPRa construct using phage protein MCP fused to transcriptional activator SoxS. This CRISPRa construct, referred to as SMS, was compared with previously reported CRISPRa constructs and showed up-regulation of a reporter gene library independent of its PAM sequence in Escherichia coli. We also demonstrated down-regulation and multi-gene expression control with SMS at non-NGG PAM sites. Furthermore, we successfully applied SMS to up-regulate endogenous genes, and transgenes at non-NGG PAM sites, which was impossible with the previous CRISPRa construct.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , RNA Guia de Cinetoplastídeos/genética , Proteínas Recombinantes/metabolismo , Regulação para Cima/genética
11.
Microb Cell Fact ; 21(1): 170, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999607

RESUMO

BACKGROUND: Escherichia coli is one of the most important hosts for production of recombinant proteins in biopharmaceutical industry. However, when selecting a suitable production strain, it is often not considered that a lot of different sub-species exist, which can differ in their genotypes and phenotypes. Another important development step is the scale-up of bioprocesses with the particular challenge that heterogeneities and gradients occur at production scale. These in turn can affect the production organism and can have negative impact on the process and the product quality. Therefore, researchers developed scale-down reactors, which are used to mimic manufacturing conditions in laboratory scale. The main objectives of this study were to determine the extent to which scale-related process inhomogeneities affect the misincorporation of non-canonical amino acids into the recombinant target protein, which is an important quality attribute, and whether strain specific properties may have an impact. RESULTS: We investigated two industrially relevant E. coli strains, BL21(DE3) and HMS174(DE3), which produced an antigen binding fragment (Fab). The cells were cultivated in high cell density fed-batch mode at laboratory scale and under scale-down conditions. We demonstrated that the two host strains differ significantly with respect to norleucine misincorporation into the target protein, especially under heterogeneous cultivation conditions in the scale-down reactor. No norleucine misincorporation was observed in E. coli BL21(DE3) for either cultivation condition. In contrast, norleucine incorporation into HMS174(DE3) was already detectable in the reference process and increased dramatically in scale-down experiments. Norleucine incorporation was not random and certain positions were preferred over others, even though only a single codon exists. Differences in biomass and Fab production between the strains during scale-down cultivations could be observed as well. CONCLUSIONS: This study has shown that E. coli BL21(DE3) is much more robust to scale-up effects in terms of norleucine misincorporation than the K12 strain tested. In this respect, BL21(DE3) enables better transferability of results at different scales, simplifies process implementation at production scale, and helps to meet regulatory quality guidelines defined for biopharmaceutical manufacturing.


Assuntos
Produtos Biológicos , Escherichia coli , Aminoácidos/metabolismo , Produtos Biológicos/metabolismo , Códon/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes
12.
Bioprocess Biosyst Eng ; 45(9): 1499-1513, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35915164

RESUMO

Perfusion bioreactors are commonly used for the continuous production of monoclonal antibodies (mAb). One potential benefit of continuous bioprocessing is the ability to operate under steady-state conditions for an extended process time. However, the process performance is often limited by the feedback control of feed, harvest, and bleed flow rates. If the future behavior of a bioprocess can be adequately described, predictive control can reduce set point deviations and thereby maximize process stability. In this study, we investigated the predictive control of biomass in a perfusion bioreactor integrated to a non-chromatographic capture step, in a series of Monte-Carlo simulations. A simple algorithm was developed to estimate the current and predict the future viable cell concentrations (VCC) of the bioprocess. This feature enabled the single prediction controller (SPC) to compensate for process variations that would normally be transported to adjacent units in integrated continuous bioprocesses (ICB). Use of this SPC strategy significantly reduced biomass, product concentration, and harvest flow variability and stabilized the operation over long periods of time compared to simulations using feedback control strategies. Additionally, we demonstrated the possibility of maximizing product yields simply by adjusting perfusion control strategies. This method could be used to prevent savings in total product losses of 4.5-10% over 30 days of protein production.


Assuntos
Anticorpos Monoclonais , Reatores Biológicos , Algoritmos , Biomassa , Perfusão/métodos
13.
N Biotechnol ; 71: 37-46, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35926774

RESUMO

Fusion protein technologies improve the expression and purification of recombinant proteins, but the removal of the tags involved requires specific proteases. The circularly permuted caspase-2 (cpCasp2) with its specific cleavage site, efficiently generates the untagged protein. While cleavage with cpCasp2 is possible before all 20 proteinogenic amino acids, cleavage before valine, leucine, isoleucine, aspartate and glutamate suffers from slow, and before proline extremely slow, turnover. To make the platform fusion protein process even more general such that any protein with an authentic N-terminus can be produced with high efficiency, the bacterial selection system PROFICS (PRotease Optimization via Fusion-Inhibited Carbamoyltransferase-based Selection) was used to evolve cpCasp2 into a variant with a catalytic turnover two orders of magnitude higher and the ability to cleave before any amino acid. The high specificity and the stability of the original circularly permuted protease was fully retained in this mutant, while the high manufacturability was mostly retained, albeit with decreased soluble titer. Four point-mutations are responsible for this change in activity, two of which are located in or near the binding pocket of the active site. This variant was named CASPON enzyme and is a major component of the CASPase-based fusiON (CASPON) platform technology. Applicability for the production of recombinant proteins was demonstrated by enzymatic removal of the CASPON tag from five model proteins. The CASPON tag enables high soluble expressions, affinity purification and good accessibility for cleavage. The five industry-relevant proteins of interest were FGF2, TNF, GH, GCSF and PTH.


Assuntos
Aminoácidos , Caspase 2 , Cromatografia de Afinidade , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes
14.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887026

RESUMO

Fusion protein technologies to facilitate soluble expression, detection, or subsequent affinity purification in Escherichia coli are widely used but may also be associated with negative consequences. Although commonly employed solubility tags have a positive influence on titers, their large molecular mass inherently results in stochiometric losses of product yield. Furthermore, the introduction of affinity tags, especially the polyhistidine tag, has been associated with undesirable changes in expression levels. Fusion tags are also known to influence the functionality of the protein of interest due to conformational changes. Therefore, particularly for biopharmaceutical applications, the removal of the fusion tag is a requirement to ensure the safety and efficacy of the therapeutic protein. The design of suitable fusion tags enabling the efficient manufacturing of the recombinant protein remains a challenge. Here, we evaluated several N-terminal fusion tag combinations and their influence on product titer and cell growth to find an ideal design for a generic fusion tag. For enhancing soluble expression, a negatively charged peptide tag derived from the T7 bacteriophage was combined with affinity tags and a caspase-2 cleavage site applicable for CASPase-based fusiON (CASPON) platform technology. The effects of each combinatorial tag element were investigated in an integrated manner using human fibroblast growth factor 2 as a model protein in fed-batch lab-scale bioreactor cultivations. To confirm the generic applicability for manufacturing, seven additional pharmaceutically relevant proteins were produced using the best performing tag of this study, named CASPON-tag, and tag removal was demonstrated.


Assuntos
Escherichia coli , Fusão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade
15.
Toxins (Basel) ; 14(6)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737057

RESUMO

Non-toxic derivatives of the cholera toxin are extensively used in neuroscience, as neuronal tracers to reveal the location of cells in the central nervous system. They are, also, being developed as vaccine components and drug-delivery vehicles. Production of cholera-toxin derivatives is often non-reproducible; the quality and quantity require extensive fine-tuning to produce them in lab-scale settings. In our studies, we seek a resolution to this problem, by expanding the molecular toolbox of the Escherichia coli expression system with suitable production, purification, and offline analytics, to critically assess the quality of a probe or drug delivery, based on a non-toxic derivative of the cholera toxin. We present a re-engineered Cholera Toxin Complex (rCTC), wherein its toxic A1 domain was replaced with Maltose Binding Protein (MBP), as a model for an rCTC-based targeted-delivery vehicle. Here, we were able to improve the rCTC production by 11-fold (168 mg/L vs. 15 mg/L), in comparison to a host/vector combination that has been previously used (BL21(DE3) pTRBAB5-G1S). This 11-fold increase in the rCTC production capability was achieved by (1) substantial vector backbone modifications, (2) using Escherichia coli strains capable of growth-decoupling (V strains), (3) implementing a well-tuned fed-batch production protocol at a 1 L scale, and (4) testing the stability of the purified product. By an in-depth characterization of the production process, we revealed that secretion of rCTC across the E. coli Outer Membrane (OM) is processed by the Type II secretion-system general secretory pathway (gsp-operon) and that cholera toxin B-pentamerization is, likely, the rate-limiting step in complex formation. Upon successful manufacturing, we have validated the biological activity of rCTC, by measuring its binding affinity to its carbohydrate receptor GM1 oligosaccharide (Kd = 40 nM), or binding to Jurkat cells (93 pM) and delivering the cargo (MBP) in a retrograde fashion to the cell.


Assuntos
Toxina da Cólera , Toxina da Cólera/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos
16.
ACS Synth Biol ; 11(2): 820-834, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35041397

RESUMO

Antibody fragments such as Fab's require the formation of disulfide bonds to achieve a proper folding state. During their recombinant, periplasmic expression in Escherichia coli, oxidative folding is mediated by the DsbA/DsbB system in concert with ubiquinone. Thereby, overexpression of Fab's is linked to the respiratory chain, which is not only immensely important for the cell's energy household but also known as a major source of reactive oxygen species. However, the effects of an increased oxidative folding demand and the consequently required electron flux via ubiquinone on the host cell have not been characterized so far. Here, we show that Fab expression in E. coli BL21(DE3) interfered with the intracellular redox balance, thereby negatively impacting host cell performance. Production of four different model Fab's in lab-scale fed-batch cultivations led to increased oxygen consumption rates and strong cell lysis. An RNA sequencing analysis revealed transcription activation of the oxidative stress-responsive soxS gene in the Fab-producing strains. We attributed this to the accumulation of intracellular superoxide, which was measured using flow cytometry. An exogenously supplemented ubiquinone analogue improved Fab yields up to 82%, indicating that partitioning of the quinone pool between aerobic respiration and oxidative folding limited ubiquinone availability and hence disulfide bond formation capacity. Combined, our results provide a more in-depth understanding of the profound effects that periplasmic Fab expression and in particular disulfide bond formation has on the host cell. Thereby, we show new possibilities to elaborate cell engineering and process strategies for improved host cell fitness and process outcome.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Bactérias/genética , Dissulfetos/química , Dissulfetos/metabolismo , Transporte de Elétrons , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo
17.
Biotechnol Lett ; 44(1): 77-88, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767126

RESUMO

OBJECTIVES: The applicability of proton-transfer-reaction mass spectrometry (PTR-MS) as a versatile online monitoring tool to increase consistency and robustness for recombinant adeno-associated virus (rAAV) producing HEK 293 bioprocesses was evaluated. We present a structured workflow to extract process relevant information from PTR-MS data. RESULTS: Reproducibility of volatile organic compound (VOC) measurements was demonstrated with spiking experiments and the process data sets used for applicability evaluation consisted of HEK 293 cell culture triplicates with and without transfection. The developed data workflow enabled the identification of six VOCs, of which two were used to develop a soft sensor providing better real-time estimates than the conventional capacitance sensor. Acetaldehyde, another VOC, provides online process information about glucose depletion that can directly be used for process control purposes. CONCLUSIONS: The potential of PTR-MS for HEK 293 cell culture monitoring has been shown. VOC data derived information can be used to develop soft sensors and to directly set up new process control strategies.


Assuntos
Prótons , Compostos Orgânicos Voláteis , Terapia Genética , Glucose , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise
18.
Talanta ; 235: 122691, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517577

RESUMO

The nucleocapsid protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for several steps of the viral life cycle, and is abundantly expressed during infection, making it an ideal diagnostic target protein. This protein has a strong tendency for dimerization and interaction with nucleic acids. For the first time, high titers of NP were expressed in E. coli with a CASPON tag, using a growth-decoupled protein expression system. Purification was accomplished by nuclease treatment of the cell homogenate and a sequence of downstream processing (DSP) steps. An analytical method consisting of native hydrophobic interaction chromatography hyphenated to multi-angle light scattering detection (HIC-MALS) was established for in-process control, in particular, to monitor product fragmentation and multimerization throughout the purification process. 730 mg purified NP per liter of fermentation could be produced by the optimized process, corresponding to a yield of 77% after cell lysis. The HIC-MALS method was used to demonstrate that the NP product can be produced with a purity of 95%. The molecular mass of the main NP fraction is consistent with dimerized protein as was verified by a complementary native size-exclusion separation (SEC)-MALS analysis. Peptide mapping mass spectrometry and host cell specific enzyme-linked immunosorbent assay confirmed the high product purity, and the presence of a minor endogenous chaperone explained the residual impurities. The optimized HIC-MALS method enables monitoring of the product purity, and simultaneously access its molecular mass, providing orthogonal information complementary to established SEC-MALS methods. Enhanced resolving power can be achieved over SEC, attributed to the extended variables to tune selectivity in HIC mode.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo , Cromatografia , Escherichia coli/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2
19.
J Biol Chem ; 297(4): 101095, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418435

RESUMO

Proteases serve as important tools in biotechnology and as valuable drugs or drug targets. Efficient protein engineering methods to study and modulate protease properties are thus of great interest for a plethora of applications. We established PROFICS (PRotease Optimization via Fusion-Inhibited Carbamoyltransferase-based Selection), a bacterial selection system, which enables the optimization of proteases for biotechnology, therapeutics or diagnosis in a simple overnight process. During the PROFICS process, proteases are selected for their ability to specifically cut a tag from a reporter enzyme and leave a native N-terminus. Precise and efficient cleavage after the recognition sequence reverses the phenotype of an Escherichia coli knockout strain deficient in an essential enzyme of pyrimidine synthesis. A toolbox was generated to select for proteases with different preferences for P1' residues (the residue immediately following the cleavage site). The functionality of PROFICS is demonstrated with viral proteases and human caspase-2. PROFICS improved caspase-2 activity up to 25-fold after only one round of mutation and selection. Additionally, we found a significantly improved tolerance for all P1' residues caused by a mutation in a substrate interaction site. We showed that this improved activity enables cells containing the new variant to outgrow cells containing all other mutants, facilitating its straightforward selection. Apart from optimizing enzymatic activity and P1' tolerance, PROFICS can be used to reprogram specificities, erase off-target activity, optimize expression via tags/codon usage, or even to screen for potential drug-resistance-conferring mutations in therapeutic targets such as viral proteases in an unbiased manner.


Assuntos
Caspase 2 , Cisteína Endopeptidases , Evolução Molecular Direcionada , Escherichia coli , Engenharia de Proteínas , Caspase 2/biossíntese , Caspase 2/química , Caspase 2/genética , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos
20.
Sci Rep ; 11(1): 9413, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941799

RESUMO

Multicellular organisms cultivated in continuous stirred tank reactors (CSTRs) are more sensitive to environmental conditions in the suspension culture than microbial cells. The hypothesis, that stirring induced shear stress is the main problem, persists, although it has been shown that these cells are not so sensitive to shear. As these results are largely based on Chinese Hamster Ovary (CHO) cell experiments the question remains if similar behavior is valid for insect cells with a higher specific oxygen demand. The requirement of higher oxygen transfer rates is associated with higher shear forces in the process. Consequently, we focused on the shear resistance of insect cells, using CHO cells as reference system. We applied a microfluidic device that allowed defined variations in shear rates. Both cell lines displayed high resistance to shear rates up to 8.73 × 105 s-1. Based on these results we used microbial CSTRs, operated at high revolution speeds and low aeration rates and found no negative impact on cell viability. Further, this cultivation approach led to substantially reduced gas flow rates, gas bubble and foam formation, while addition of pure oxygen was no longer necessary. Therefore, this study contributes to the development of more robust insect cell culture processes.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Microfluídica/métodos , Resistência ao Cisalhamento/fisiologia , Estresse Fisiológico/fisiologia , Animais , Células CHO , Linhagem Celular , Fenômenos Fisiológicos Celulares/fisiologia , Cricetinae , Cricetulus , Insetos/citologia , Dispositivos Lab-On-A-Chip , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA